
MODULO DIY Mode Overview

Do you want to control the MODULO device via your own app or home
automation platform? DIY Mode helps!

The DIY Mode is designed for IoT home automation users and developers
who would like to control the MODULO device via existing home
automation open-source platform or local HTTP client instead of eWeLink
App. In DIY Mode, when the device is connected with the network, it will
publish its services and capabilities according to the mDNS/DNS-SD
standard. Before publishing the service, the device has enabled the HTTP
server on the port declared by the DNS SRV record. Device exposes the
capabilities through an HTTP-based RESTful API. Users can obtain device
information, control the device by sending an HTTP API request.

Supported Device

Product Class Device Firmware version note

Single Channel DIY Plug
BASICR3
RFR3
MINI

Firmware 3.5.0 refers to v2.1 API
protocol
Firmware 3.3.0 refers to v1.4 API
protocol

Single Channel DIY
Dimmer

D1
Firmware 3.5.0 refers to v2.1 API
protocol

eWeLink Mode and DIY Mode

The MODULO devices [1] can work in either eWeLink mode or DIY Mode, In
eWeLink mode, the device is connected with eWeLink cloud and controlled by
eWeLink APP, while in DIY Mode, device publishes its capability service and is
controlled by HTTP Post request.

The steps of entering the DIY Mode and connecting to an existing WiFi
network:

1. Entering the Compatible Pairing Mode (AP) by long press the paring
button for 5 seconds after power on

2. Connecting the Access Point named ITEAD-XXXXXXXXXX with default
password 12345678 via mobile phone or PC

3. Browser visits http://10.10.7.1/
4. Filling in the existing WiFi network SSID and password
5. Entering DIY Mode successfully with specific WiFi network connected.

Example for Single Channel DIY Plug (BASICR3, RFR3, MINI) enters DIY
Mode:

1. Power on;

2. Long press the button for 5 seconds to enter Compatible Pairing Mode
(AP)
User tips: If the device has been paired with eWeLink APP, reset the
device is necessary by long press the pairing button for 5 seconds, then
press another 5 seconds for entering Compatible Pairing Mode (AP)

3. The LED indicator will blink continuously
4. From mobile phone or PC WiFi setting, an Access Point of the device

named ITEAD-XXXXXXXXXX will be found, connect it with default
password 12345678

5. Open the browser and access http://10.10.7.1/
6. Next, fill in WiFi SSID and password that the device would have

connected with
7. Succeed, now the device is in DIY Mode.

Example for Single Channel DIY Dimmer (D1) enters DIY Mode:

1. Power on;
2. Long press the pairing button of RM433 remote controller for 5 seconds

to enter Compatible Pairing Mode (AP)
User tips: If the device has been paired with eWeLink APP, reset the
device is necessary by long press the pairing button of RM433 remote
controller for 5 seconds, then press another 5 seconds for entering
Compatible Pairing Mode (AP)

3. The dimmable Light which is connected with D1 will blink continuously
(promptly jump 100% to 1%, 1% to 100% …)

Steps of 4 - 7 are same as the example of Single Channel DIY Plug.

Note:

 The user settings will be cleaned once the operation mode is changed
from one to another.

 The WiFi router or AP should work in 2.4GHz and support mDNS
service.

 LED blinking meanings
Fast single blinking – The device does not connect to the WiFi network;
Fast double blinking – The device connects to the WiFi successfully and
is able to be discovered through mDNS and respond the request from
LAN network.

 Once the device is already in DIY Mode, the WiFi configuration page
of http://10.10.7.1/ is not accessible.

 If a wrong WiFi SSID or password was entered, the device will fail to
connect with specific WiFi network, with 20 seconds timeout mechanism,
the device stop connecting WiFi network, please try again with the
example steps of 1-7.

 Official firmware upgrade is only available in eWeLink APP.
 The protocol v1.4 can be accessed via https://github.com/itead/Modulo

_Devices_DIY_Tools

DIY Mode LAN Discovery Mechanism

DIY Mode LAN discovery implements IETF Multicast DNS protocol and
DNS-Based Service Discovery protocol. [2]-[8]

Device mDNS Service Info Publish Process

The device publishes its own service (i.e. device capability) according to the
mDNS/DNS-SD standard discovery protocol when the device is connected to
LAN (Local Area Network).

The fields definition as follow:

Attribute Description Example

IP Address
The LAN IP Address is obtained
through DHCP instead of the Link‐
Local address of IPv4/IPv6

Hostname
The Hostname must be unique in
LAN;
Format: eWeLink_[Device ID]

eWeLink_10000000d0

Service
Type

_ewelink._tcp

Service
Instance
Name

The Service Instance Name must be
unique in LAN;
Max: 63 bytes (21 UTF8 Characters)

same as Hostname

TXT Record

One or more strings; No exceeded
255 bytes for each string; No
exceeded 1300 bytes for the entire
TXT record;

TXT Record note：

1. TXT Record must contain below strings:
“txtvers=1”, “id=[device ID]”, “type=[device type]”, “apivers=[device API
interface version]”, “seq=[TXT Record serial number]”, “data1=[device
information]”;

2. Optional strings:
“data2=[device information]”, “data3=[device information]”,
“data4=[device information]”

3. “seq=[TXT record sequence number]” indicates the order in which the
TXT records are updated (the order in which the device status is
updated). It is recommended to be a positive integer that increments
from 1 (reset to 1 when the device restarts);

4. When the device information is longer than 249 bytes, the first 249 bytes
must be stored in data1, and the remaining bytes are divided by length
249, which are stored in data2, data3, and data4. The complete device
information format is a JSON object.

For BASICR3, RFR3, MINI mDNS txt record example:

data1={“switch”:”on”,”startup”:”stay”,”pulse”:”on”,”pulseWidth”:2000,”rssi”:-
67,”fwVersion”:”3.5.0”}

For D1 (Dimmer) mDNS txt record example:

data1={“switch”: “on”,”mode”: 0,”brightness”:
50,”brightMin”:0,”brightMax”:255,”startup”: “on”,”rssi”:-67,”fwVersion”:”3.5.0”}

Whenever content other than seq changes, such as Service Instance Name is
modified, device information is updated, etc., the device must multicast the
corresponding DNS record (including the incremented seq) according to the
mDNS/DNS-SD standard.

Discovery Process for Device Service

The discovery process must follow the mDNS/DNS-SD Discovery protocol to
discover the Modulo DIY Mode device with “_ewelink._tcp” service type when
your application or client connect with Internet (WiFi or Ethernet);

Here is the discovery process:

1. Search in the LAN for all devices with the service type _ewelink._tcp
through the DNS PTR record.

2. Get the Hostname and Port of device service via parsing out the device
DNS SRV record. (The default port is 8081)

3. Get device IP address via DNS A record or by other means.
4. Get the info of “device ID”, “Service Type”, “device API interface version”

and “device information” via parsing out the device DNS TXT Record.

Note:

 When the “device type” of the device service does not match with the
“device type” of your application or client, or the device API interface
version of the device service is higher than your application or client’s,
the application or client should not parse out the “device information” and
call the device API interface, but prompt the specific reason for users
why the device cannot be controlled via LAN and suggest to upgrade the
application or client.

 The application or client get the IP address of the device via DNS A
record when the device API interface is about to be called.

RESTful API Control Protocol（HTTP POST）

The device must open the HTTP server in the port declared by the DNS SRV
record before the device publishes its services; the device publishes the
capabilities through a HTTP-based RESTful API. Because of the LAN’s security

and device’s limited computing power, this document recommends that the
device provides HTTP instead of HTTPS interface.

The device type and API interface version of each product is shown as below:

Product type apivers

BASICR3
RFR3
MINI

diy_plug 1

D1 diylight 1

RESTful API Request and Response Format

URL: http://[ip]:[port]/[path]
Return value format: json
Method: HTTP post
RESTful API Request works in POST method and JSON formatted request
body.

1
2
3
4
5
6

{
 "deviceid": "100000140e",
 "data": {
 "switch": "on"
 }
}

Attribute Type Example Optional Description

deviceid String 100000140e Yes
The device ID for this
request.

data Object
{“switch”:
“on”}

No

Object type, Specific
device information
setting when controlling
the device. Empty object
when check the device
information

RESTful API Response works in 200 OK HTTP response code and JSON
formatted response body.

1
2
3
4
5
6
7

{
 "seq": 2,
 "error": 0,
 "data": {
 "signalStrength": -67
 }
}

Attribute Type Optional Description

seq Number No
The order of device status update (also
the order of TXT Record update)

error Number No

Whether the device successfully sets the
specified device information.
- 0: successfully
- 400: The operation failed and the
request was formatted incorrectly. The
request body is not a valid JSON format.
- 401: The operation failed and the
request was unauthorized. Device
information encryption is enabled on the
device, but the request is not encrypted.
- 404: The operation failed and the
device does not exist. The device does
not support the requested deviceid.
- 422: The operation failed and the
request parameters are invalid. For
example, the device does not support
setting specific device information.

data Object No
Object type, it returns specific device
info when check the device information

Note:

 Due to the device computing capability, the time interval of each HTTP
request should be no less than 200ms.

 The default Port: 8081

